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Scope of. Extended Contract NAS2-4151

Work under Contract NAS2-4151 started on February 1, 1967.
Results obtained through August, 1967 are summarized in
"Phase T Report under Contract NAS2-4151" of September, 1967.
Subject contract was extended through July, 1968. The main
purpose of the extended contract was to check the valldlty of
the approxlmate digital method for computing the response of
blade flapplng to random inputs, tentatlvely suggested 1n
Phase I Report, by comparison wilth NASA conducted slmulator
studies, to develop alternate methods 1f requiréd and to
extend the analysis to higher rotor advance ratios. This.
report summarizes the results obtalned since September, 1967
through July, 1968, during which period 12.9 man-months were
expended. .



" Concepts for a Thegretical and Experlmental

Study of Lifting Rotor Random Loads

and Vibrations

{Phase II)
by Kurt H. Hohenemser
and Gopal H. Gaonkar

Washington‘University, St. Louis, Missouri

Abstract:

A comparison wlth NASA conducted simulator studies has shown
that the approximate diglital method for computing rotor blade
flapping responses to random inputs, tentatlvely suggested in
Phase I Report, gives wlth lnc¢reasing rotor advance ratlo

the wrong trend. Consequently, three alternatlve methods of
solution have been considered and are described in this report.
An approximate method based on the functional relation between
input and output double frequency spectra, a numerical method
based on the system responses to deterministie inputs and a
perturbation approach. Among these the perpurbation method
requires the least amount of computation and has been |
developed in two forms - the filrst form to obtain the. presponse
correlation function and the second for the time averaged
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spectra of flapping oscillations. The range of validity of

the first form has been ascertained by a comparison between

the Runga-~-Kutta and perturbation response values to harmonile
inputs and that of the second form by comparing the time averaged
response spectra values obtalned from the perturbation metheod

and the NASA conducted simulator results. Such comparisons
indicate that the perturbation scheme should provide reascnable
approximations up to a rotor advance ratio of one at a Lock

biade inertia number of four.
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Notation
#y =E [x]

E {£(x)]

xy = xq(8y), % = x3(t5)

Sey(F1:7p) = E [ X (e)u(e,)]

h( 7)

H(f)

-vi-

Expected value of sample x
Expected value of sample function f(x)

Values of sample funetion x(t) at
times &, and t2 respectively

Time

Time difference

Average tilme

Cross-correlation functlion between
sample time functions x(t,) and y(te)

Frequency
Frequency lntervsal

Fourier transform of sample

~ function x(t)

Cross-correlation function
between sample frequency functlons
X*(f1) and Y(fe), also called
power spectral denslty

Unit impulse response function

Freduency response function
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y( W :t)

yplw,t)

7 (w,t)
ys( U:)t)
-yAC( W :t)

‘VAS( W :t)

-vii-
Modulating frequency
Rotor angular vélocity
Advan¢e ratio
Blade flapping angle, posltive up
Mean blgde angle of éttack

Power spectral density of mean
angle of attack

Average power spectral density of'
blade flapping angle

- Right hand slde deterministic funectlon

Respohse of the system to the input e

Response of the system to the
input )’L(t)ej""'t

Real part of y(w,t)
Imaginary part of y(w,t)
Real part of yA(a),t)

Imaginary part of y{w,t)

lwt
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°1’°2’d1 and d2 | Constants assoclated with the
left hand side of the blade
flapping equation

ao,a1,a2...,b1,bé... Constants assoclated with Att)
B(f) : Fourier transform of B (t)
E(‘f) ' Fourier transform Qf &)
Superscripts:

* : , Conjugate complex

. , Time differentiation

— ' Time average



-1~

1., Introduction

Of the various compllcations encountered when trying
to apply to lifting rotors the stochastlc methods developed
to analyze airplane responses to atmospheric turbulence,
we are concerned in this Phase II Report only with the time
varyilng character of the system and of the random input. |
Though the theory 1s developed in a more general form
applicable to the response of time varying linear systems to
certalin types of non-stationary random inputs, the application
is to the flapping response of rigid blades hinged to a rigldly
supported hub, The blades represent in forward flight an
approximately linear system with time variable periodic stiffness
and damping. Because of the perlodically varying relative
flow veloecity occurring in forward fllight of the 1ifting rotor,
the aerodynamic excitation of the blades cannot be represented

by a .stationary random process &S5 in the case of frozen wing
ailrcraft, but must be described as a non-stationary stochastlc
input. '

Non-stationary random inputs have been analyzed for a
few engineering applications, for example for the response of
airframes to random runway disturbances during decelerations
after touchdown, Ref. (1), for the descriptlon of strong motion
random earthquake excitation, Ref. (2), and for the response of
spacecraft to time varylng random excitatlons during the
jaunching phase, Ref. (3). In these appllcations the system
nad constant parameters and could be represented by a time
invariable transfer function. A flapping blade of a 1ifting
rotor, however, because of the time variable perlodic parameters,
~cannot be represented by such a time invariable transfer function.

The general theory of non-statlionary stochastic procesSes
has been well established as a dlrect extenslon of the corres-
ponding theory of stationary random processes, References (4),
(5), (6), (7). Rigorous solutions of responses to non-stationary
random inputs'thus far available are, however, restricted to
constant parameter systems, References (6}, (8). The complexity
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of the analysis 1s due to the fact that, except in very speclal
cases, closed form solutions valid over large time intervals
do not as yet exist for differential equations with varlable
coefficilents. When 1t 1s possible to find a rigorous solution,
as 1n'the case of the Bessel differential equation, the"<'
quadrature operations required to obtain for example the L
response auto-correlation functlon are quite involved even for
statlonary random inputs, Ref. (8).

Since our literature survey has not uncovered prior
“work toward solving the response of a linear system.with time
varlsble parameters under non-statilonary stochastic loading,
. an approximate method for moderate advance ratio was suggested
in Phase I Report according to which 1t was assumed that .
both the excitation and the response can be .considered to be a
statlonary random process moduliated by a deterministic time
function. It was further assumed that the general equation
‘between the two-frequency input and ocutput power apectral
densities could be approximately solved as far as the time
averaged single frequency response spectrum is concerned,
by ignoring the relations between the diagonal and off-dlagonal
terms of the two-frequency power spectra and by considering
only the relation between the diagonal terms of the input and
response spectra.

Since- submitting'Phase I Report consistent data have
been received from the Simulator Computer Systems Branch
of the NASA Ames Research Center, where the problem of random
blade flépping response at various advance ratios had been
simulated upon our request. When comparing the time averaged
single frequency power spectra from the slmulator study wilth
the equivalent data from the apprcximate digital method suggested
in Phase I Report, it was'found that this method resulted with
increasing rotor advance ratio in the wrong trend, so that the
method cannot be accepted as an approximatlion. @
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Efforts were then directed toward sclving the general
equation between the two-frequency input and output power
spectral densitles including the relations between dlagonal
and off-diagonal terms., However, even for rather crude dis-
cretization of this functional equation one must obtain a
computer solution for many hundred simultaneous linear equations
between complex varlables. It was found that a first computer
program established for this purpcse dld not yield convergence
of the iterations and this attempt was then suspended, though
further work on the computer program might still lead to a
success,

Next it was considered to obtain,a'solution based
on the reéponse to deterministic inputs.assumling zero initial
displacement and rate of displacement. Once such response
time histories have been obtalned for a sufficient number of
frequency intervals, 1t 1s a slmple matter of a frequency
quadrature to obtain time varlable response mean square values.

It was finally declded, before attempting an entirely
numerical solution, to develop a perturbation method of solution
“which is an approximate analytical method for cases where
the time varying parameters in the differential equations do
not differ very much from thelr time mean. A numerical solutlon
of the deterministic'response problem wlth 1ts inherent
computer costs can then be avoided.

Much of the reliability of the perturbation method
within 1ts range of applicability stems from the fact that it
repeatedly deals with constant parameter systems for différent

-

known inputs.

Numerlcal evaluations in this'report are concerned
with the determination of the range of validity of the
perturbatlon method and its application to the problem of
random rigld blade flapping.
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2, General Relatlons and Concepts for Non-Stationary Random
Processes ' ' B
Non-stationary random processes can be represented
elther by a double frequency power spectrum or in some cases
by an instantaneous time varying spectrum. In the first two |
sub-sections these two lmportant concepts are briefly -discussed.
The third sub-sectlon deals with a particular non-stationary
random process obtained by modulation of a statilonary process
with a deterministic time functlon. 1In the subsequent section
- on random response analyses 1t will be assumed that the non-.
stationary lnput 1s of this form.
2.1 Double Frequency Spectra
The general relatlons between correlation functions
and power spectral densities have been discussed in Phase I
Report Section 2.1. For two non-stationary. random processes
with sample functions x(t)}, y(t) having zeroc means and having
the sample Fourier transforms X(f), Y(f) the cross-correlation
function is giveh by

Rx&(t1,t2) . [x(t1)y(t2)] - di?‘sxy(f1,f2)e"127(f1t1 - f2t2)df1df2
—00 )
2.1

and the cross-power spectral density is given by the inverse of
eqn. 2.1 ‘

Sxy(f],fg) =R [x*(f;i)Y(fg):l =fj' ny(t1,t2)9121r(f1t1 -f ’ce)dt?dt.’2
: ' —~00
2.2

For a single non-stationary random process with sample function x(t)
autocorrelation function Rx(tl’ 2) and power spectral density
Sx(f1,f2)'are related by

R (t1,ty) = E [x(t )x(te)} ﬁsx(:1,f2) ‘12”(f1t1 = T2t )df.ldfe

oo ,
2.3



and its inverse

® . |
‘ - f

Se(£1,f,) = E [X*(fl)x(fz) = ffﬂx(tvte)eigw(fltl Ete)dt1dt2

The spectral function S, (f,,f,) is in general for any combination

of freque.nciesf],f2 a complex number and not physically realizable.
For weakly stationary random processes

Rx(t.l,tz) = Rx(ta - t4) | | | 2.5

e e 1+ 5 |

8, (£4,£,) = 8 s ) &(f, - £) 2.6.
where &(-:-) is the Dirac delta function with properties

8(t) =0 1ft¢‘o
o(t if t = 0 2.7
fa(t)dt = fa(t)dt 1, €>0

so that for a function ¢(t):

| j?(t - b)) #(t)at = B(s,) 2.8

Inserting 2.5 to 2.7 in eqn. 2.3 and 2.4 one obtains with

t2~t1=r and £q = f, = f
R(T) = E [x(t))x(t,]] = Jsx(f yel?TiTyp 2.9
s.(0) = E[x(0)x()] = _[E;( T)e 18 Ter 2.10

Since X*(£)X(f) is real, the spectral function S_(f) 1s also
real and physically realizable. |
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2,2 Instantaneous and Time Averaged Spectra

In Phase I Report a specific example of- a time averaged
power spectrum was glven in Section 2.3. Here the general
concepts of Instantaneous and tlme averaged power spectra will
be discussed. In the definition of the double frequency power
spectral density, egqn. 2.4, it 1s assumed that thé?sample"
functions x(t). are defined over an infinlte time interval,
though in actuality one has available only sample records
cbserved over a finite duration. Furthermore, the double
Vfrequency spectrum 1s not a physically reallzable quantity.
The concept of an instantaneous power spectrum, Ref. (.9),
defined over a finite time interval and then time averaged,
resulting in a physically reallzadble single frequency spectrum,
allows to establish a relation between field observations and
the theory of non-stationary random processes, _

The instantaneous power spectrum S_(f,t) is, aceording
" to Ref. (9 ), defined as

x .
_ T Ty, -izvfr
Sx(f,t) == fo(t -5, %4 a)e dr | 2.11

-0 '

It is also not physically realizable but it leads to a practical
way of treating non-stationary random date by averaging over a
sufficlently long time interval T . Denoting with ﬁi(1‘) and

S. (f) the time averaged autocorrelation function and power-
spectral density respectively, one obtalna from eqn. 2.11%:

00
- im 1 — 1D
Sx(.f) B %"’m T _q;[ Sx(f’t)dt ﬁ_mf Rx(T)e STET gy

2.12

. -]
o L 1im 1 Tr T
Re(T) = 10 _T-—-mf rg[(t--f,t+§)et

_ 2.13
3 (f)e *2TIT g -
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In order to relate the double frequency spectrum Sx(f1,f2) to the
time averaged spectrum E%(f) we substltute 1n egn. ©.3 t1 =t - T

) ’
t, =t + % , so that
' iEﬂ't(fe - f1) i'rr‘r(f2 + f1)

]
T A _
Rx(t -z, b+ -2-) __.o[fsx(fl’fE)e | e | af,df,,

Therefore from edqn. 2.13

T/2 o 1omt(f, - £4) irr(f, + £)

= 1im 1 -
RAT) = 1w 7 _ /[_wffi‘>x(f1,f2)e e df,df,dt

\ o twT(r, b £ T/21em (s, - £,)

1im ,

-

1im If irr(fy + £y) sin(f, - £1)7T
= - af, daf

T _J Sx(fq,Tp)e (T, - T)7r %2

EO]L"

In accordance with Ref. (7), p. 450 it is now assumed
that the double frequency spectrum of the non stationary random
process can be expressed as a sum of regular and singular masses:

Sx(f‘],fz) ‘= Sr('f‘|:f2) + Ss(f‘l) 6(f2 - f'])

where Sr(fl’fg) has no line masses on the line f1 = f2. Inserting

this expression into ean. 2,14 and noting that

1im ‘sin(fa - £)7T 1 for £y = £,
T~ 00 (T, - £,)7T T 0 for £ # £,

f1 + f
2]
- 127w €

R (T) = J s(£)e ar

and by comparison with egn., 2.13

2

one obtains with: = [

5 (£) = s.(f) | 2.15
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This important theorem says that the time averaged zutocorrelation
function ﬁ;(-r) and the time averaged power-spectral density

E;(f) are unliquely deflned by the line masses of the double
frequency spectrum along the diagonal f1 = f2' If these line
masses are zero, then S (f) = Rx(v') = 0. In the following
section it is shown that such 1line masses occur when the non-
statlionary process can be represented by a statlonary random
process modulated by a periodic time function.

2.3 Stationary Random Processes Modulated by a Periodic Time
Functlion

Consider a sample function from a non-stationary random

process
z(t) = A(t)x(t) . | 2.6

where A(t) is a deterministic periodic time function and x(t).
a sample functlion from a stationary random process.
We write the Fourler series for A(t) with the basilc freguency £,
in the form

: | k2t t | |

Alt ¢, e 2.17

( )’& 22; K |

A(t) must be real since it represents a physical quantlty, so that
e = ctk‘and we can write eqn, 2.17 also in the form

o ~1kenf t
a(s) = 3 oy € ©

Applying the first part of egn. 2.3, one obtains for the auto-

correlation function
@ @ 5 iewr_(-kt, + 1t,)
Rz(t1,t2) = ﬂx(t1,t2)k=22m 3 e e g e

~00

2.18

Introducing as before bty =t - T/2, t2 =t + T/2 and considering
that R (t,T) is independent of t, since x{t) 1s the sample function
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of a stationary random process, eqn. 2.18 assumes the form

. T

® o x 12wt (1 -X%)t+ (1+Kk)s
Rz( r,t) = RJ[( TL){:: Z:ml—_?;m ¢S e . :
2.19

Time averaging the autocorrelation function according to egn. 2.13
and considering T/2

1lim 1 121rf0(l - K)t 1 for 1 =Xk
T — o m e o dt =
T _ /o O for l =+ k

one obtalns
RZ(T)=RX(T) > c,c, € _ , 2.20

From the first part of egn. 2.4 one obtains for the power spectral
density

Sz(f'.i,fz) =J=¥mp=_zm 1% Sx \ > ) ﬂ(fg - f'l - fo(-,j+p)l

2.21

The time averaged spectral density, according to the theorem

proven in sectlion 2.2, is equal to the line mass of the double
frequency spectrum along the diagonal f1 =-f2, so that with j = p and
f1 + f2 s
——— =

— %0 »

S, (1) =J=)__:m ¢ ¢ Sx(f - Jf,) _ 2.22
The same result can also be derived by inserting egn. 2.20 into
eqn. 2.12.



-10-

3. Response of Time~Varying Linear Systems
In Sectlon 2.4 of Phase I Report the response auto-

correlation function and the response power spectral density
were given 1n terms of the time variable impulse response function
and of the time varilable frequency response function. It was noted
that numerilcal solutions would be very difficult since 1n general
nelther the impulse response functlon nor the frequency response
- function are given analytically.
Following some remarks by Sveshnikov in Ref. (8), p. 135
the problem is here reformulated by introducing the response v(f,t)
of the linear system to an excitatilon ej‘2'"-ft where the system is
assumed to be at rest in its equilililbrium poéition at the origin
of time, It 1s shown how input-output relaticns between correlation
and spectral functions can be expressed in terms of the particular

solution y(f,t).

3.1 General Non-Stationary Random Input
The response y(t) of a time varying linear system wilth
an infinlte operating time 1s given by

y(t) = f h{T,t) x (% ,-"r)d'r 3.1

00

Physical realizability requires that the lmpulse response function
h(T;t) =0 for T<O,

Stability of the system requires that

/Th(r,t)' dT< ® .

The input x{t) applied to the system at time t -T can be either
a deterministic function or a sample functlon of a stochastic
process.

Assuming a harmonic input

izrft ' _
x(t) = e 3.2
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the output, according to eqn. 3.1 is

. f - -
y(f,t) = fnh(-r,t)eieTr (e -7 )d-r 3.3

-

which can also be wrltten as

' i2rft
y(f,t) = H(f,t)e : 3.4
: o ~i27fT ' _
with H(L,t) = f n(T,t)e dr 3.5
[« +]
For a general input x(t) we wrilte the Fourier transform inverse
. ® 1oy ft
x(t) = 4{ e X(f)dr 3.6

Since the response to the input e1emit 45 y(f,t), see equation
3.2 and 3.3, one can write the response to the input x(t) in the
form

y(t)'= fmyl(f,t)x(f)df | 3.7

x(t) and y(t) are physical qualities and, therefore, real. From
eqn. 3.6 it then follows that X(f) = X*(-f) and from egn. 3.7 that
y(f,t) = y*(-f,t). The latter equation can now also be written as

e

y(t) = [ ¥ (£,6)X (r)ar

-0
Defining correlation functions and power spectral densities
according to eqns. 2.1 to 2.4 and inserting eqns. 3.6 and 3.7
one obtains: '

0
Ryterstg) = [f S enn s nanan, 3

ny(t‘lxte) imff y(fq_at'g) c

Sx(f3,f4)df3df4 3.9
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% ' ® 127f.t %
. 1¥1 =
5,(81,8,) = ifsx(fa,fu) Lf e Y (£5,8)dt,
' -1emfyt,) %
] e y(£,,t,)dt, | df,df),
3,10
o ® -127ft %
Seg(TysTp) = fsx(f‘wfu) i J e y(£,,t)at { df,
—0

3.1

The time dependent mean sguare response, wWhlch gives in many
applications adequate information, is obtained by setting in
egn. 3.8 t1 = t2 = t. Thus

qyz(t) = Ry(t,t) = ~/_‘/’y*(fa,t)y(fq,t)Sx(f3,f4)df3df4

—00

3.12

If the 1nput 1s a stationary random process the double integrals
of the frequencies reduce to single integrals and one obtains
for example for the response autocorrelation functlon

0 .

% ) .

R (t,t,) = Jf v (£,6)3(1,t,)8, (£)ar : 3,82
—do

and for the time variable mean square

]

qyg(t) = Ry(t,t) ==./r y*(f,t)y(f,t)sx(f)df 3.12a

For constant parameter systems the frequency response function H{f) is
independent of time, so that '

. 127ft
v(f,t) = H(f)e 3.13



-13-
The mean square response ls then glven by

=127t - f
a 2(t) = Ry(t ) = jG[h (fB)H £,)e 2re(fy = D) (f3,fu)df ar,,
3,14

and is time variable. For stationary random input this reduces
to the time invarlable mean square response

o]

= Ry(O) = J/FH*(f)H(f)Sx(f)df - 3f15

For time variable systems the partilicular solution
y(f,t) has to be usuvally evaluated numerically. It 1is, therefofe,
preferable to avold complex arithmetlc In the numerical algorifthm.
Since the system 1s linear, the response'can be expressed as

y(£,8) = y (£,t) + 1y (f,8) - 3.16
‘where y (£,t) and g (f,t) are the responses to the inputs cos2rft

and sinEvft respectively. By expressing the Fourler transform
of a sample functlon by

X(£) = %, (£) + 1X,(£)

and then applylng the definition 2.4
one can easlly show that the power spectral density can be expressed

by

sx(f1,f2) = SxR(f1’f2) +1SxI(f1,f2) 3.17
with propertles
sxR(f1,f2) = SxR(-f1,—f2) 3.18

S, (£1,6,5) = -8, 1(~£4,-1,) 3.19
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R, (£q,t,) = ff{yc(fpm)yc(fg,te)

+ ¥g(£1,8)v,(£0,t)} Sep(£y,0p)a8,8,

'iZTP{ Ys(£1,%4)y,(fp,t5) . 3,20

- Yc(f1’t1)ys(f2’te)} S,1(fy,Tp)af, a8,

. =)
ij(t1,t2) = ,lyﬂ{ Vo (f5st,)cos 2mf ity
-

+ 3, (£,,8,)81n 2wf1t1} S_p(£;,5,)df af,

+/]{ yc(fa,te)sin 2wl ty : |

-y (f,,t,)cos 2wf1t1} S 1(£q,£,)df,af,

For statlonary random input equation 3.20 reduces to the single
integral '

m- : ‘ '
R (67,%) = J{ e(1,81)7g(£.55) + 7(8,80)7,(£,55) } S(e)as

3.22

The time variable mean square 18 then given by

g%(t) = R (b,8) = f{ y,2(£,8) + ¥y 2(2,8) } 8, (£)ar

—00 3.23

an expression derived by Sveshnikov in Ref. (8), p. 136,
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3.2 Modulated Statlonary Random Input

It 1s now assumed that the input can be represented
" by eqn. 2.16 and 2.17 so that the input is a stationary random
process modulated by a periodic time function. In section 2.3
it had been shown that such a random process leads to a special
kind of double frequency power spectrum with line masses aiong
the diagonal f1 = r2, see eqn. 2.21, so that an average power
spectral density and an average autocorrelatlon function different
from zero exist. Substituting the input spectrum eqn., 2.21
Into eqn. 3.8 for the response autocorrelation function, one
obtains

1+ 1 -fo(k + 1))

R, (tq,t,) = [[V (f1.-t RACPRZVS ): =Z cye ,f 2

6(f2 - £y - fo(—k + 1)) df,daf,

By'virtue of relation 2.8 the above expression reduces to

o o % oo* . .

=00

R (ty,t5) =

k<~ ]

With the substitution £q - kf =1 ~ the expression further
simplifies to ' ‘
oo

R (t1,t,) = kf s c;clfy*{(f+ kfo), bt w(f + 1), 8 (£)dr

= ~00] =~00 -
e 3,24

From eqn. 3.4:

® 127(f + 1f )t
— ol e
chy(f + 1f ,t, _1 ;_m clH(f‘ + 1f0,t2)e

1l =—00
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Because of egn. 2.17 the left hand side of this equation 1s the
response to the input - ‘

12wt '
A{t)e 3.25

Denoting thls response by YA(f,t), one obtains finally .

o .
*
R(b1,t,) = [ Th(6,80)Y,(8,8,)5,(8)ar 3.26
bt~ <]
This equation has the same form as eqn, 3.8a for stationary
random input, the only difference being that in case of a modulated
stationary random input the response Yh(f,t) to xﬂx(t)eiewft is to

be used instead of the response y(f,t) to el2mt

The time variable mean square 1s now

t) = R(6,8) = f ¥i(£,6)%,(£,8)s,(0)ar 3.27

and corresponds to eqn. 3.12a.

In real form equations 3.22 and 3.23 can be used, whereby merely
yc(f,t) and ys(f,t)'must be replaced by the responses YCA(f,t);
YsA(f’t) to the inputs A(t) cos 2mft and A{t) sin 2rft rgspectively.
From a computatlonal point of view it is of 1mportance that a
non-étationary‘random input of the type considered here can be
treated in the same way as a statlonary random input.
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4. Methods of Approximate Solutions

In Phase I Report the bhlade angle of attack taken as an
average over the blade span, had been assumed to represent a
stationary stochastic process, and the aerodynamic loads on the
flapping blade had been determined by modulating this statlonary
process with a periodic time function. In a more sophisticated
theory the blade angle of attack willl appear already as & modulation
of a statilonary stochastic process which has to be defined by the
atmospheric turbulence penetrated by the aireraft at constant
flight speed. From a measurement point of view 1t 1s almost a
necesslty to assume the input to be a modulated stationary
stochastic process, whereby the underlying statlionary process
can be measured with respect to its power-spectral density or
correlation functions. In contrast, the power-spectral densities
of non-stationary processes cannot be measured in principle
and the measurement of thelr correlation functions requires a’
large set of sample functions, usually not available, The baslc
assumption with respect to the stochastle structure of the input
made in this report is for 1lifting rotors from a physlcal polnt
of view plausible, from a measurement point of vliew almost
required, and frohsimathematical or computational point of view,
as shown in the preceding sections, a'very great simplification.
The three approximate methods discussed in the following are all

based on thils partlecular assumption for the stochastlc input.
The presentation is further limited to a single degree of freedom
linear system. For the actual 1ifting rotor more than one
degree of freedom should be consldered, whereby input and
response would appear in matrix form and where the problem of
eross correlation functlons between the various degrees of
freedom would occur, as dilscussed in Phase I Report. Finally,
the actual lifting rotor description includes non-linearities
which if small could be consldered in the perturbation theory,
but which would render the general theory presented herein
inapplicable, |
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4.1 Solution Based on Functional Relatidn Between Input and
and Output Double Frequency Spectra
To 1llustrate the method, we will consider the approxi-

mate differential equation for blade flapping, derived in Phase I
Report *+

8+ (eq + a1sint)é + (02 + a, cost)g = (c3 + a331nt)E' 4.1

Here @ , the blade angle of attack averaged over the blade span,

is assumed to represent a statlonary random process. The right

hand side of egn, 4.1 is then a modulated statlonary process and
represents the input to the blade flapping equatlon. In general

the factors for § (damping of the flapping motlon), for g (stiffness)
and for @ can also contaln other terms of the respective truncated
Fourier series.

Taking the Fourler transform on both sides of egn. 4.1 and denoting
the Fouriler transform of f by B, that of & by &, one obtains,

as shown in Phase I Report

_(Eva)EB(fE) + 01211‘1{‘2]3(:{'1) + a,m ! (1‘.‘2 - é-}r-)B(fe - -2%)

a
- (r, + é-}f)B(fB + -élw); + ¢,B(f,) + 5= { B(f, - -,5};) + B(f, + -2-1‘;)} =
- 83 = 1, = Ty -
cA(f,) + 5= {_A(f2 - =)+ A(f, + ﬁ)} 4,2

Taking the conjugate complex of this equation and substituting

f1 for fz, multiplying the two equations and taking the mathematical
expectation of this product leads to a lengthy functional equation
between the known power-spectral denslty for the angle of attack @

0 for f1 # f2

£ |2 (e)A(1,)] - =

%i(f) for £, = f i

2-'_—'
and the power spectral density for the flapping angle
E B (f,)B(f = S (£,,f
EACHECN IR PRCIES
**In later sections constants a, and 2, are replaced by d; and d

respectivelyaand the Input modulating function c3 + ajg sint 1s
replaced by _%.+ b sint. '

2
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For the particular case of egn. 4.2 the response power spectrum
SB (f1,f2) consists only of line masses along the llnes f1 = f2
and f1 - f2 =T 5% . If higher order terms of the truncated
Fourier series in the coefficients of 8, g and & 1in eqn. 4.2
are consldered, the response spectrum Sg (f1,f2) contains also
line masses along the lines f1 - f2 =7 §%-, where n = 1,2...
up to the highest order of the truncated Fourler seriles.

Replacing f = kKAf, where Af 1s a small frequency interval
and k a discrete variable with values k = 1,2,...m, the functional
equat;on for SB (f1,f2) can be replaced by a system of complex

linear equations, Since from physlcal considerations
Sg (kaf, 1af) — 0

for sufficiently large k and 1, one obtalins a finite number of

equations to compute the values Sg (kaf, 1Af) for all dlscrete

values of k,1, for which Sg 1s assumed to be different from zero.
The problem 1s now reduced to the inversion of a large

number (in the order of many hundred) of linear equations for

complex variables, having complex coefficients. In Phase I

Report the relations between the 1line masses on the dlagonal,

fy = £, and the line masses on the other two lines, £ - Iy = ]

2m

had been neglected, and only a relation between the line masses

on the diagonal line retalned. This leads to a real system of
equations with real unknowns. Since submitting Phase I Report

it was found that thls incomplete system of equatlons does not
yield approximation, since not even the trend with increasing
magnitude of the periodic coefficient a,, a5, a; in edn. 4.1

is properly establlished by the incomplete system of equations.

It was subsequently attempted to solve the complete
system of equatilons for tﬁe complex unknowns, however for the
numerical Input data considered (see Sectlon 5}, the numerilcal
experience showed that the complex coefflecient matrix 1s 111
conditioned and not directly suited for standard lteratlve tech-
niques. The program so far completed stores only non zero elements
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and for any preassigned value of m generates its own complex
coefficlent matrix which 1s by a standard subroutine split into
real arithmetic. This representation of a complex matrix 1in
real form takes practically twice the original core storage

but was found to be computationally more convenient and easlly
amenable for double precislon. It seems necessary to genérate
a preconditioning matrix, by a trial and error procedure.

This aspect of the problem, using precconditioning
matrices, has not yet been explolted. It is unlikely that the
préconditioning operation and the subsequent inversion of the
large matrix will be possible without a considerable amount of
computer time per case. Of physlcal slignificance and SubJect
to direct measurement is only that portlon of the double frequency
spectrum Sﬁ (f1,f2) conslsting of a line mass along the diagonal
f] = f2, since, according to Section 2.2, only the diagonal line
mass contributes to the time averaged power-spectral density.
However, contrary to the assumption made in Phase I, the relations
involving the line masses on the non-diagonal lines cannot be
neglected in the computatilon.
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4.2 Solution Based on the System Response to Deterministic Inputs

The response autocorrelation function Ry(t1,t2) can
be elther computed from eqn. 3.24, using the response y(f,t)
to the input eigwft, or it can be computed from eqn. 3.26,
using the response Yh(f,t) to the input A(t)eiavrt, the actual
computations to be performed with the equivalent real form
equations. The latter approach takes less machlne time but does
not economically permlt a parametric varlation in A(t). For the
first approach the response calculatlons are Iindependent of the
input modulating function A(t) and variations in this function
are reflected merely in the double summation of eqn. 3.24.

In either case a deterministic response analysis over
a sufficiently wilde frequency and time range 1s required.,

Once the responses are determined, the autocorrelation functilon
Ry(t1=tg) or the mean square response 3y(t,t) :equires merely
a single integration over the applicable frequency range.

In performing the numerlcal response computations the }
computer time involved should be an important factor in selecting
a suitable one-step or a multl-step method. Truncation ahd
numerical instabllity problems should not affect the reliability
of the computatibhs over sufficlently large time intervals,

It 1s presumed that the round off errors can be checked with
a double precision arithmetlic - a provislon easlly avallable
in present day computers.

For second order differential equations as in our blade
flapping problem, 1t 1s possible by a standard substitution
(Ref, 12, p. 227) to obtain another equation of the same order
but ﬁithout the first derivative terms. A multi-step method
known as Noumerov's method (Ref. 13, p. 137 and Ref. 14, p. 301)
was used for some sample runs to compute the blade flapping
response for an input cos2yft, beginning wlth zero dlsplacement
and rate of displacement for t = 0. This method has no stability
problems and the truncatlon error is of the order of O(h6),

Ref. 14, p. 301, " In addition to the known zero dlsplacement
and displacement rate conditions the method requires one extra
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starting value of the displacement which was computed from
Taylor serles. On an overall basis this multi-step method
took more machine time than the one-step method desecribed
below.

This one-step method was the Runge-Kutta method of
fourth order specially suited to second order differentlal
equations, giving a truncation error of order O(h5). The
program is based on the algorlthm glven in Ref. 12, page 238,
Being a one-step method it is self starting without any
stabllity problems. Numerlecal comparisons have been made with
reduced step size and in some other cases with the perturbation
theory. This rather heuiristic approach toﬁard truncation and
round off problems indicates that the computational errors are
too insignificant to affect the reliabllity of the response
calculations, -

After numerlcally computing the determinlstic responses
over an adequate range of frequency and time the quadrature
operations based on the Simpson rule 1s carried out in accordance
with equation 3.24 or 3.26.

Numerical experlence thus farﬁgained seems to 1ndileate
that with computer time of 40-45 minutes on machines comparable
to the IBM 360~50 Model, a reasonably accurate time dependent
mean sdguare response can be obtained. Thils assumes that the
periodically varying damping and stiffness functions are
explicitly given in the form of Fourier serles. Otherwise a
separate subroutine has to be added to perfofm such a PFourier
analysis,
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4.3 Perturbation Method for Linear Time Variable Systems with
Smail Time Varying Parameters :

A drawback in a complete numerical approach is the
considerable amount of machine time in computing the responses
for 1nputs cos wt and sinwt over an adequate range of the
discrete frequency parameter « . Approximate analytical methods
on the other hand provide solutions in terms of the varlable
frequency ¢ and 1t is possible to make a'qualitative,study of
the response with or wilthout including transieﬁt effeqts.

To evaluate the correlétion function of the response
by the perturbation method, the solution to known deterministic
lnputs 1s expressed as a power series in €, a perturbation
parameter which in our problem 1is only a mathematical artifice.
We have an exact solution when € = O but the solution we seek
is obtalned by letting € = 1. The response of the time variabile
system 1is then calculated by repeatedly solving the associated
constant parameter system for known Inputs and using the principle
of superposition. Flnally, the computation of the response
correlatlion functlon comprises single quadrature for statlonary
inputs and double quadrature for non stationary inputs. (See
equations 3.8 and .2.6)

A direct Fouriler 1nversion of the correlation function
to obtaln the spectral description of the response, equatlon 2.4,
involves computationally inconvenient quadrature operations
which can be avolded 1f the time variable parameters and the
input medulating function are periodic as in the case of a
flapping blade. In order to make use of the perilodicity of the
system parameters, we express the stochastlc response g(t)
as a power serlies in ¢ "and then obtain the double frequency
spectrum %ﬂ (cu1,¢02) according to equation 2.4. This latter
perturbation scheme 1s analogous to the one employed for
non linear stochastie proﬁlems, Ref. 2, page 272; except Iin
the present blade flapplng problem the excitation is a specilal
kind of a non statlonary process for which the spectral density
functlon comprises series of line masses, equation 2.21.

The response spectrum same as the input spectrum also contains
line masses. Therefore, for the physically r'ealizabl_e time
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averaged response spectrum one needs to consider only the
diagonal terms of the response spectrum.

4.3.1 Computatlon of Response Correlation Function
Consider a time variable parameter linear system
typified by the equation

n n : n-J
F(B) = B +J 5 , fey + ci'j sin( .t + gj)} B 4..3
where 3 = Qf_ﬁ_

at"
With the forecing function f(t) for which the spectral density

function Sfuo1;¢d2) or the correlation function Rf(t1,t2) is
known, equation 4.3 takes the form

F(B) = £(t) _ 4.4

Now introduce two more linear operators

. n n n~J
L) =B+Z c.pB 4.5
g=1 90
and
N(B) = L(8) - F(B) 4.6
T
[cjl. >>' I d'j sin( Q.t A+ gj)l 4.7

it is possible to introduce a perturbation parameter € such
that (10, 11)

B(t) = g (t) + eBy(t) + €% B (1) +... , 4.8



.

Instead of solving equation 4.3, we now seek a solution to the
problem

L(B) = £(t) + €N(B) 4.9
for €=1.

Substifuting the power series expanslon, equation 4.8, in
equation 4.9 and equating the ccoefficlents having the same
powers of €. one gets the following infinite system of equatlons:

L{ ﬂo) = f(t) . 4.10
n n-J
L( 31)=- z d‘j sin(_Qot‘+QJ)ﬁo 4.11%
= 1 ‘
n n-J o '
L(ﬁkﬂ) = -] X 1 dj sin( .t + OJ) Byl 4,12
J=1 '

In equation 4.4, when the random input f(t) 1s replaced by a
deterministic harmonic foreing function ei‘“t, the response
v( w,t) can also be expressed as

Y wst) = y(w,b) +€ y(w,t) + €y(w,t) + ,,,

The solution of equation 4.10 with f(t) replaced by et@t gives

lwt

yolw,t) = Hw)e 3 4,13

[ v =)
(5%,
£
4+

3
o
cr

where tuJ are the roots of the equation

n
1A+ 2 e (i)™ =0
Nadae
J = ‘
and the constants Bj(a;) are to be evaluated by satisfying the
n 2ero initial conditions of the system. The first part of
the response in equaticn 4.13 refers to the steady state



-2

solution and the term under the summatlion sign refers to
transient solutions which can be neglected for stable systems
assuming one is only interested in the steady state. If
transients are of interest, they can always be superimposed

to the stochastic solutlon. Henceforth, we will consider only
steady state solutlons,

When y (w,t) and its n-1 derivat ives are substituted
in equation 4. 11 and noting that the right hand side deterministic
input is periodic, 1t is possible to solve for y1(a,,t) in
-closed form. - Similarly, ye(u,,t), yB(QJ,t)...etc. have to be
. solved if correction terms of order more than one are needed.

As the system 1s llnear one can set

The correlating function R (t1, 2) is then obtained from the
relation 3.8. yc(“” ) and Vg (w,t) in equation. 3.20, respec—
tively correspond to inputs cosu)t and sinwt or the real and
imaginary parts of y(w,t) in equation 4.14.

In the present rigid blade flapping problem the forcing
function in equation 4.4 1s a separable non statilonary process
of the type of equation 2.16, where the input modulating
function 1s periodic. Therefore, the spectral density function
of the input is glven by equatlon 2,21.  In the computation of
the response correlation function, the double integral in
equation 3,8 reduces to a series of single lntegrals depending
upon the number of Fourler terms 1n the input modulating
function. Another approach which 1s better suited for a
specific problem involving no parametric study of the input
modulating function and especially when it 1s not periodic
is to compute y, (w,t) instead of y{w,t) and then use relation
3.26 to compute R (t1, Ej‘ The perturbation scheme to compute
yA((u,t) 1s exactly simllar to the one described earlier.

The only difference is that the forecing functlon now is a .

product of the input modulating functlon and ei“"t
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For any input modulating function A(t),yﬂo(a,,t),
yA1(“”t)"'yAk+1(ﬁ” ), etc. can be obtained from equations

o0

Ipol w,t) =Jh( PIA(E - 7)el@ (E - Ty B |
ar(w,t) = [ h(r)p (t - 7)ar 4.16
YA¥+1(-w,t) =fh('r)Fk(t -r)dT , ete. 417

where Fo(t),...Fk(t) represent the right hand side deterministic
functions in equations 4.11 and 4.12 after replacing the stochastic
responses B (t),.. ﬁk(t) by the deterministic responses Yao {(w,t),...
yAk( 1), etc. When the input modulating function is periodic,
convolution integrals in equations 4.15, 4,16 and 4.17 can be
evaluated in closed form. As the system 1s linear

yplw,t) = vy (w,t) + vy (w,t) +.., ete. -~ 4,18

We note 1n passing that when the input is a statlonary
process, y(w,t) and yA(ﬁJ,t) are ldentical.

4,3.2 Response Spectral Density Function
Taking the Fourier transform of equation 4.8 and then
using relation 2.4, one gets

Sglwi,wy,) = SBO(“‘V""E-) + € [Sﬂoﬂl(“1’°’2) t 33130("’1_’ wp)l

+ez... 4,19

We are interested only in SB ( w, w) which for the specific
type of input considered in this report corresponds to the



physically reallizable time averaged power Spectrum 3 (w).
By virtue of relation 2.15, 3.18 and 3,19, EB (w) can be
€xXpressed as '

Eﬁ(w)_ Sg (w,w)

_ 2
_sﬂo_(w,w)+2eRea1[SBoﬂi(w,w)J +€°,,, 4,20

Fourier_transform of equation 4,10 at frequency glves

in the form

56,0910 92) = (0 )8 wy)s,( o ) Y

Similarly the Spectral density functions fop B (t),...
B,.1(t), ete. can be expressed ag

Sﬂ k+1'( .w‘l: wg)‘ = 1/4 Jé 1 1é1€—1)n—‘jdjdl(i)en—l-‘j?-i(gjhol)

| o \n=d, ., n-1 | |
(w]'-Qo) (we”go)' sﬂk(w?" QO:QQ“Q)

o]
- / =1 12: 1 - ) J71 ) € J 1)
o (-1
(wy + QM wy - g )" Sﬁk("ﬁ T Ro ¥ Q)
a - | n- | 2n-1-j -1 + 8.)
A E D 1 E () a e (1)21m0-1( 6, 4 8,

o yh-j : n-1 o ' '
.(w1 - 2) (Qb-+ QO) Sﬂk(aﬁ - 90*”2'*90)
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aml L (-1)""da a, (1) 213t 0y + 8y)

(w; + Q)" (w, + o)™ sg @1+ 2595+ Q)

4,22

Now, také' the Fourler transform of equation 4.12 at frequency Wy
to yleld '

WT‘:’? 8k+1 “’2) [JEI 5% {(i)n-j( Wy - Qo)n-J B lw, - Qo)n-JeieJ
(1) w, + _QD)rl'J B (w,+ .QO)_n'Je"ie j]

Multiplying both sides with A", (w,) and then taking the
expectation, equation 2.4, one gets

n ‘
) = _ - r 181 n-j-1
Sﬂkﬁku(w”w?) Hlwy) [1/2 s‘gk(«ﬁ,_w2 Qo) &y e, ()

(w, - @)% -1/2 5, (wy, wy + Q)

D -.16) n-j-1 . n-
Sk By £ 7 a0 wy + Q) J]_

4.23

J

Wilth the help of relations 4.21, 4.22 and 4.23, the response
spectral denslity functlon can thus be obtained to any desired
order,
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5. Numerical Examples
The equation studled by the perturbatlion and numerical
methods reads

g+ (01 + d; sin Q, t) B+ (c2 + d, cos Qy t) B = A(t)a(t) 5.1.

Selecting a time unit for which the rotor angular velocitys% =1
and substituting ¢, = & , d; = 2, ¢, =2¢; , 4, = d; and_

A(t) = cq + 2d1 sint, an approximate blade flapping equation

valid up to moderate advance ratlos 1s obtalned.. (For details

of equation 5.1 refer to Phase I Report, page 17). For practical
rotors the non dimensional-inertia number ¥ varies from 2-10,
therefore we have assumed a typlcal value of ¥ = 4 in the numerical
examples. Note alsolthat the system parameters c, and dl

which are linearly related to the advance ratio.u also. appear

in A(t). However, the system parameter d, is varied from O to |
only in the left hand side of equation 5.1 without changing

the right hand side deterministic function A(t). The computational
scheme with‘differeht values of d; 1is thus associated with two
specific functlons

A(t) = 0.5 + 0.4 sint

and

S. (w) = __._2_2

a 0.25 + W

As the function A(t) which corresponds to the actual physical
system at an advance ratio of 0.3, 1s not simultaneously changed
along with the system parameter d1, the computed values of the

time variable mean square response R, (t,t) and the time averaged
response spectra %B (w) correspond to the actual blade flapping
problem only for d1 = 0.2. The intent of this report is not

so much to carry out an extensive parametric study of Y and H

for different input spectra which are of interest'in the atmogpheric
turbulence study but to establish the range ol validity of the
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perturbation method with regard to g and then within this
admissible range deﬁelop a computational scheme to compute the
time variable mean square response and the time‘avefaged spectra
of the flapping oscillations. With the computer program written
in Fortran IV language, it 1s possible to evaluate R, (t,t)

for any desired values of ¥ and M when the stochasticrinput

" &(t) has a known spectral density function Sg (w) .

Now, coming to the actual description of the computational
scheme and presentation of computer results, it is convenlent
‘to describe them in three stages:

In the first stage, the range of validity of the perturbatilon
method with respect to the advance ratlo g has been established
by comparing the perturbatlion system responses with that of the
Runga-Kutta method results. The computer program, for any
preass;gned‘values of ¢4 and dt’ givés the systemiresponses
according to these two gethods provided the input to the
system is of the form (—%—+ P sint)ei”t. Numerical results
presented 1n Figures la to lc refer to three typical frequency
values of 0.5, 1 and 1.5 with constants a, = 2 and b1 = 0,
A comparison of system responses, Flgures la to le, indicates
that up to d1 = 0,7 (or approximately u < 1) the perturbation
scheme should provide reasonably accurate results.

| In the second stage, the time variable mean square
_ response %B(t,t) 1s evaluated accbrding to equation 3.27,
by integrating the produqt of the spectral density function
S5 (w) 2nd the square of the absolute value of the system
response to the input (—g-+ by sint)ei”t. The limits of
Integration in equation 3.2 have been truncated to -3 to
+3., This finite frequency range of integration seems to be
adequate for applied purposes because In the numerical examples
discussed here the value of the integrand for hdl > 3 is less
than 1072, . The quadrature routine is based on Simpson's rule
with a stepslze of 0.1. Figure 2 refers to two cases -
statlonary and non stationary inputs to a constant parameter
system. The first case corresponds to thé hlade flapping
equation at zerO'advahce ratic and as expected, the mean
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square response, dotted lines in Figure 2; are time invariant.
The second case, though not directly relevant to the present
blade flapping problem is an analytical model of conslderable
interest where the mean square response is time dependent due to
non stationarity in the input. The strong time dependency of
the mean square response, full lines in Figure 2, is due to the
fact ghat the'time invariant or the constant part of the input
with —% = 0,5, 1s not small compared to O.4 sint, the time
variable part. For a spectral description of such a separable
non stationary process refer to Section 2.3, PFigure 3 shows the
time dependency of the mean square response of time varilable
parameter systems subJect to non'stationary'eXCitations. Here
both the time varlability of the system parameters and non
statlionarity of the lnput contribute toward the non stationarity
of the response.

The third stage comprises the computation of the time
averaged response spectra according to equations 4.21, 4.22,
4,23 and 4.20, Figure 4 summarlzes these numerical results
for different values of the system parameter d1, For two
extreme values of d1, d1 = 0 and d1 = 0.8, Figure 5 shows the
comparison between the perturbation values and the NASA
conducted simulator results, and Flgure 6 also refers to a
similar comparison with d1 = 0,2, Considering the discrepancy
in the time averaged input power spectrum between the simulator
study and exact analytical values, Flgure 5, and also other
types of errors due to finite fllter band width, etc. inherent
to simulator results, the perturbation values wlthin the admissible
range of the perturbatlon scheme mentloned earller agree reasonably
well with the simulator results, Figures 5 and 6, ‘ Y
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6. . Conclusions

Same as in Phase I Report 1t 1s assumed here that
atmospheric turbulence produces an input stochastlc loading of
the 1ifting rotor blades in forward flight which is of the
separable kind and consists of a stationary random process

modulated by a perilodic time function. Since submltting

Phase I Report the problem of random blade flapping has been

further studied and the following new results have been

obtained:

6.1 The approximate method of solving the functional relation
between input and output double frequency power spectral
densities for the flapping rotor blade in forward flight,
tentatively suggested in Phase I Report, has been checked
against simulator results. While the method glves the
correct order of magnitude effects of moderate advance
ratio on the response power spectiral density, 1t cannot
be used as a quantitative estimate of these effects,

6.2 In the approximate method of 6.1 all off-diagonal terms
of the double freguency input and cutput power spectral
densities were neglected. A more elaborate approximation
was tried, ihcluding the off-diagonal line masses. The
resulting system of linear equations has a complex coeff'i-
clent matrix which turned out to be 111 conditioned and
not directly suited for iterative techniques.

£.2 Solutions have been developed based on the system response
to deterministic inputs. Such responses can be computed
with standard numerical methods like the Runge-Kutta
method. The deterministic input‘consists of a harmonic
foreing function with or without beilng modulated by the
right - hand side deterministic time function. If The time
variability of the system parameters compared to the asso-
cilated constant parameters is not too large, the deterministic
response can be cbtained with adequate accuracy also by
the perturbation method. In either case the response
autocorrelation function or the time variable mean square
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response can be computed by a single integration over the
applicable frequency range. _

A perturbation method has been developed in two forms.
According to the first form the deterministic responses

are computed by adding to the solution for the assoclated
constant parameter system correctlions from the time varying
parameters. The determinlistic responses thus obtained

.are then inserted into the appropriate integrals over the

applicable frequency range, representing autocorrelation
function or time wvarlable mean square.

According to the second form Qf the perturbation method
the response power spectral density for the assoclated
constant parameter system is flrst computed and then 1mproved'
by adding the necessary correctlve cross spectral terms.
While the first form of the perturbation method is best
sulted for the computation of the time variable méan'square
response, the second form of the perturbation method lends
itself particularly well to the computation of the time
averaged response power spectral density.

The numerical examples presented herein have the main
purpose to determine the range of appllcability of the
perturbation method.and to evaluate for some typiecal
assumed cases the stochastic structure of the blade
flapping response. The results of thls method are compared
to the results of NASA conducted simulator studies. Also
some typical response time historiles obtained with the
perturbation method are compared to those obtained with
the more elaborate Runge-Kutta numerical integration
method. On the basis of the numerical examples treated
it can be concluded that the perturbation method of
determining blade responses to stochastic inputs 1is
approximately valid up to an advance ratio of one 1in

combination with a Lock inertia number of 4.
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So far the studies were primarily concerned wlth
guestions of methodology in treating time varilable
systems under non-stationary stochastic inputs of the
separable type. The methods have been applled to a
simplified approximate differential equation of blade
flapping in forward flight. ©No effort was made to
predict the stochastic input from a given atmospheric
turbulence structure. Probably -such a prediction willl
require empirical parameters to be obtained from model
or flight tests. The extension of the studies to multi-
~degree of freedom representations of-the blades will
require data on cross correlation functions between the
generalized stochastic loads, which also should be based
on experiments. A rather stralghtforward extension of
the present studies concerns a more accurate representation
of the blade in flapping or flap-bending with more complex
expressions for the time varilable damping and stiffness
terms. Such an extension together wilth the'computation
of typlcal random response data over a wide range of blade
parameters'and stochastle 1nputs is presently in work.
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